НИТРАТЫ

Нитраты, как и фосфаты, являются необходимым для морского фитопланктона биогенным соединением. Их отсутствие, как правило, приводит к угнетению водорослей, снижению интенсивности процесса фотосинтеза. Содержание нитратов в водах Мирового океана колеблется в широких пределах — от нуля до 500— 600 мкг/л и выше. Воды, богатые нитратами, например антарктические, отличаются высокой продуктивностью.

1. Сущность метода анализа

Для определения нитратов в морской воде применялись методы, основанные на способности этих соединений окислять некоторые органические вещества с образованием окрашенных продуктов [4], а также на восстановлении нитратов до нитритов. В настоящее время в аналитической практике гидрохимических исследований чаще применяются методы восстановления, что обусловлено их простотой. Очень важно правильно выбрать восстановитель, поскольку процесс восстановления должен быть регулируемым и идти только до стадии образования нитритов. По современным данным, наиболее удачным восстановителем нитратов до нитритов является омедненный мелкокристаллический кадмий [6]. Мелкокристаллический кадмий получают электролитическим способом [3]. Последний обладает рядом преимуществ по сравнению с известным способом “хлопьевидного” кадмия [1]. Величину кристаллов можно регулировать, изменяя силу ток в цели, что устраняет необходимость последующего измельчения кадмия. Полученные кристаллы почти не содержат примесей и не окислены, так как они все время находятся в растворе. Омедняют полученный кадмий раствором сернокислой меди.

После пропускания морской воды через редуктор, наполненный омедненным кадмием, в пробе обычным способом (с реактивом Грисса—Илосвая) определяется сумма нитратов и нитритов Зная содержание нитритов в морской воде, можно легко получить концентрацию нитратов.

В основу настоящей методики положен модифицированный сотрудниками Института океанологии АН СССР В. В. Сапожниковым, А. Н. Гусаровой и Ю. Ф. Лукашевым [3] метод Вуда, Армстронга и Ричардса [6].

По Грассхофу [5], процессы восстановления нитратов и окисления кадмия в нейтральных и щелочных растворах протекают следующим образом:

NO3- + H2O + 2е ® N02- + 20Н-,

Cd + 1/2О2, + H2O ® Cd(ОН)2.

Образующаяся гидроокись кадмия со временем снижает восстановительную активность металла. Для предотвращения этого явления применяют двунатриевую соль ЭДТА (трилон Б), связывающую ионы Сd2+ в прочный комплекс.

Наибольшая полнота восстановления в пробе достигается при рН » 9,6. При этом рН раствора трилона Б, добавляемого в морскую воду перед ее пропусканием через редуктор, должен составлять 12,3—12,6. Высокая щелочность раствора является к тому же гарантией длительности работы восстановителя, поскольку диссоциация двузамещенной натриевой соли ЭДТА усиливается с увеличением рН, а диссоциация комплекса кадмия с этой солью при увеличении рН ослабляется.

При восстановлении нитратов до нитритов около 1 % нитритного азота восстанавливается до аммонийного азота. При высоких содержаниях нитритов в пробе воды (что на практике случается довольно редко) следует вводить поправку

где cno3-- — концентрация нитратов в пробе; Ĉno3- — суммарная концентрация нитратов и нитритов после восстановления; cno2-— концентрация нитритов в пробе.

Незначительный солевой эффект может быть полностью элиминирован при приготовлении стандартных растворов для построения калибровочной кривой на морской воде. Мутные пробы должны быть предварительно отфильтрованы.

Если в морской воде присутствует сероводород, его необходимо удалить осаждением при добавлении хлорида кадмия. В противном случае в редукторе будет образовываться сульфид кадмия.

2. Средства измерений, оборудование, материалы и реактивы

Для выполнения анализа применяются:

фотоэлектроколориметр (К.ФК-3, ФЭК-60, ФЭК-56) или спектрофотометр универсальный любого типа с кюветами 10—50 мм;

рН-метр “рН-340”, “рН-262” или любой другой с набором измерительных электродов;

выпрямитель переменного тока или батарея кислотно-щелочных аккумуляторов емкостью не менее 100 А-ч;

реостат Е-71 — по ГОСТ 4871;

штатив химический с зажимами — по ТУ 79 РСФСР 265;

редуктор стеклянный с “гуськом” рис. 10;

стакан термостойкий на 1л—по ГОСТ 25336;

колба коническая на 250 мл—по ГОСТ 25336;

колба мерная с притертой пробкой на 1 л—по ГОСТ 1770;

колбы мерные с притертыми пробками на 100 мл или цилиндры Несслера—по ГОСТ 1770;

микробюретки на 2,5 мл—по ГОСТ 20292;

пипетка Мора на 25 мл—по ГОСТ 20292;

пипетки градуированные на 1 и 5 мл — по ГОСТ 20292;

цилиндры мерные на 25 и 1000 млпо ГОСТ 1770;

склянки для реактивов на 250; 500 и 1000 мл—по ТУ 25-11—1058;

бумага индикаторная универсальная—по ТУ 6—09—181;

фильтры бумажные с синей лентой—по ТУ 6—09—1678;

калий азотнокислый, х. ч.—по ГОСТ 4217;

натрий азотистокислый, х. ч.— по ГОСТ 4197;

натрия гидроокись, х. ч.— по ГОСТ 4328;

кислота серная конц., х. ч. (удельный вес 1.84)—по ГОСТ 4204;

кислота уксусная ледяная, х. ч.—по ГОСТ 61;

кислота сульфаниловая, ч. д. а.—по ГОСТ 5821;

кадмий металлический в палочках, ч. д. а.— по ТУ 6—09—3097;

кадмий сернокислый, восьмиводный, ч — по ГОСТ 4456;

кадмий хлористый, 2,5-водный, ч. д. а.— по ГОСТ 4330;

свинец в палочках или пластинах, ч. — по ТУ 6—09—1490;

медь сернокислая, пятиводная, х. ч.—по ГОСТ 4165;

а-нафтиламин, ч. д. а.— по ГОСТ 8827;

этилендиамин-N, N, N', N'-тетрауксусной кислоты динатриевая соль, двухводная (ЭДТА, трилон Б), ч. д. а. или х. ч.—по ГОСТ 10652;

алюминия окись, ч. д. а.— по ТУ 6—09—426;

хлороформ (для консервации), х. ч.—по ТУ 6—09—06—800;

анионит ЭДЭ-10 п — по ГОСТ 13504 (или равноценный);

стекловата;

ртуть двухлористая (сулема), ч., импортного производства (номенклатурный номер 560009).

3. Отбор проб

Пробы морской воды для определения нитратов отбирают из батометров в склянки темного стекла с притертой пробкой, предварительно дважды промытые той же водой. Если анализ не будет производиться сразу же после отбора проб, последние необходимо консервировать добавлением раствора сулемы из расчета 2 мл 0,2 %-ного раствора на каждые 100 мл пробы. Для хранения (не более 2—3 сут) пробы на нитраты рекомендуется отбирать в полиэтиленовую посуду, консервировать указанные путем сулемой и хранить при температуре около 4 °С.

4. Подготовка к анализу

4.1. Методы приготовления реактивов для проведения анализа

4.1.1. 12 %-ный раствор уксусной кислоты приготовляют разведением 25 мл ледяной уксусной кислоты до 200 мл дистиллированной водой. Целесообразно одновременно готовить около литра этого раствора.

4.1.2. Раствор сульфаниловой кислоты, можно приготовить двумя способами: 1) 1 г сульфаниловой кислоты растворяют в 300 мл 12 %-ной уксусной кислоты; 2) такое же количество реактива растворяют при нагревании в 15 мл ледяной уксусной кислоты и 15 мл дистиллированной воды при постоянном перемешивании смеси. Затем к полученному раствору добавляют 270 мл дистиллированной воды. Раствор хранят в темной склянке.

4.1.3. Раствор а-нафтиламина готовят растворением 0,2 г чистого, окрашенного в слаборозовый цвет реактива в нескольких каплях ледяной уксусной кислоты и смешивают затем с 300 мл 12 %-ной уксусной кислоты. Раствор хранят в темной склянке.

4.1.4. Раствор Грисса—Илосвая готовят непосредственно перед употреблением, смешивая в равных объемах определенное количество растворов сульфаниловой кислоты и а-нафтиламина.

4.1.5. Раствор сернокислой меди готовят растворением 20 г соли в 1 л дистиллированной воды.

4.1.6. Раствор сульфата кадмия готовят растворением 400 г соли в 1 л дистиллированной воды, подкисленной 1—2 мл концентрированной серной кислоты. Оптимальные пределы рН полученного раствора 2—5.

4.1.7. 40-%-ный раствор едкого натра готовят растворением 40 г щелочи в 60 мл дистиллированной воды.

4.1.8. Щелочной раствор ЭДТА готовят следующим образом. 38 г трилона Б вначале растворяют в 500 мл дистиллированной воды, затем доводят объем раствора до 1 л. Прибавлением 40 %-ного раствора едкого натра (приготовление см. п. 4.1.7) доводят рН раствора ЭДТА до 12,3—12,6.

Рис. 11. Электролитическая ячейка для получения кадмия.

4.1.9. 0,2 °/о-ны.й раствор дву хлористой ртути (сулемы} готовят растворением 0,5 г соли в 249, 5 мл дистиллированной воды.

4.1.10. Раствор нитрата калия для стабилизации восстановительной способности кадмия в редукторе приготовляют разведением основного стандартного раствора нитрата калия (см. п. 6.1) в 200 раз. Раствор содержит 500 мкг нитратного азота в 1 л. Добавлением щелочного раствора ЭДТА доводят рН полученного раствора нитрата калия до 9,6.

4.1.11. Оксид алюминия промывают раствором едкого натра концентрацией 2 моль/л и оставляют на 8—10 ч в щелочном растворе. Затем отмывают дистиллированной водой, высушивают и прокаливают при 700 °С.

4.1.12. Морскую воду освобождают от нитратов и нитритов пропусканием через колонку с ионообменной смолой ЭДЭ-10п.

4.2. Метод получения мелкокристаллического кадмия

Собирают электролитическую ячейку, представленную на рис. 11. Катодом при электролизе служит свинцовая пластина с площадью поверхности 80 см2, анодом — палочка металлического кадмия диаметром около 1 см. Во избежание загрязнения получаемого продукта анодным шламом анод помещают в мешочек из нескольких слоев марли. При отсутствии металлического кадмия в качестве анода используют пластину платины; обязательным условием при этом является постоянное добавление сульфата кадмия в раствор.

Электролитом служит раствор сульфата кадмия, приготовленный согласно п. 4.1.6.

Для получения постоянного тока используют выпрямитель переменного тока или батарею кислотно-щелочных аккумуляторов.

В качестве электролизера применяют обычный химический стакан емкостью 1—2 л.

В электролизер с электролитом помещают оба электрода, соединенные через реостат с источником постоянного тока. Расстояние между электродами примерно 8—10 см. Во избежание загрязнения раствор электролита не должен соприкасаться с проволокой, на которой размещены электроды. Силу тока в цепи регулируют реостатом. Напряжение на электродах не должно превышать 3,0 В.

Образующиеся в процессе электролиза игольчатые кристаллы собирают шпателем или стеклянной ложкой непосредственно с катода. Для предотвращения короткого замыкания между электродами не следует допускать скопления кристаллов на дне сосуда. С этой же целью кадмиевый анод следует разместить таким образом, чтобы конец его не касался дна электролизера.

Полученный описанным выше способом металлический кадмий хранят под слоем воды.

4.3. Омеднение металлического кадмия

Омеднение кадмия производится в конической колбе, закрытой резиновой пробкой с вставленной в нее стеклянной трубкой.

Мелкокристаллический кадмий предварительно промывают несколько раз дистиллированной водой, подкисленной 1—2 каплями серной кислоты (плотность 1,84). Далее кадмий помещают в упомянутый сосуд и обрабатывают его в течение 3—5 мин при интенсивном встряхивании раствором сульфата меди, приготовленном согласно п. 4.1.5 из расчета 500 мл раствора на каждые 100 г кадмия. Встряхивание продолжают до полного обесцвечивания раствора.

Омедненный кадмий промывают несколько раз дистиллированной водой, после чего вместе с водой переносят в редуктор.

4.4. Подготовка редуктора .

Редуктор для восстановления нитратов до нитритов должен быть снабжен “гуськом” для предохранения омедненного кадмия от высыхания. В нижнюю часть редуктора впаяна стеклянная пластина с отверстиями, на которую помещают стекловату. Перед заполнением кадмием редуктор наполняют снизу дистиллированной водой таким образом, чтобы не было пузырьков. Затем омедненный кадмий переносят в редуктор, при этом непрерывно постукивают по его стенкам стеклянной палочкой с резиновым наконечником для того, чтобы металл укладывался плотно. При внутреннем диаметре редуктора 1”8 см высота слоя кадмия должна составлять 15—17 см.

Заполненный редуктор промывают дистиллированной водой с добавкой щелочного раствора двузамещенной натриевой соли этилендиаминтетрауксусной кислоты (2 мл раствора, приготовленного согласно п. 4.1.8, на 100 мл дистиллированной воды). Для установления восстановительной способности омедненногд кадмия пропускают через редуктор также 3—4 л раствора азотнокислого калия, приготовленного по п. 4.1.10. Этот раствор также подщелачивают раствором ЭДТА.

Скорость истечения регулируют верхним краном редуктора. Она не должна превышать 8—10 мл/мин. Редуктор готов к использованию лишь после того, как полнота восстановления по стандартному раствору нитрата калия достигнет постоянного значения в интервале 90—100%. Метод определения восстановительной способности редуктора описан в п. 6.3. Для ускорения анализа проб морской воды рекомендуется иметь несколько редукторов. В этом случае необходимо для каждого редуктора определить восстановительную способность и построить градуировочную кривую.

4.5. Устранение мешающего влияния

Если пробы морской воды мутные, их фильтруют через мембранный фильтр.

В случае присутствия в морской воде сероводорода, последний удаляют осаждением при добавлении хлорида кадмия. В противном случае в редукторе будет образовываться сульфид кадмия. Пробы, обработанные хлоридом кадмия, фильтруют через бумажный фильтр.

Определению нитратов в морской воде мешают гумусовые кислоты. Эти вещества быстро снижают активность омедненного кадмия. Поэтому пробы морской воды, содержащие гумусовые кислоты (это характерно, в частности, для прибрежных вод Балтийского, Азовского морей и Северного Каспия), перед выполнением анализа обрабатывают оксидом алюминия, подготовленным согласно п. 4.1.11. Для этого анализируемую пробу взбалтывают с 5—7 г оксида алюминия, затем отфильтровывают через бумажный фильтр.

5. Проведение анализа

5.1. Схема проведения анализа

Исследуемые пробы морской воды наливают до метки в цилиндры Несслера на 100 мл, которые предварительно дважды ополаскивают анализируемой водой. К каждой пробе по каплям добавляют щелочной раствор ЭДТА, приготовленный согласно п. 4,1.8 до установления рН 9,6. Величину рН контролируют с помощью рН-метра или универсальной индикаторной бумаги.

Затем пробы воды пропускают через редуктор с омедненным кадмием со скоростью 8-10 мл/мин; первые 50 мл восстановленной пробы отбрасывают, отбирают пипеткой 25 мл средней порции пробы и переносят в колбу или цилиндр с притертой пробкой. При этом остаток пробы должен оставаться в редукторе, покрывая тонким слоем омедненный кадмий. К каждой пробе добавляют по 1,25 мл реактива Грисса—Илосвая, растворы тщательно перемешивают и через 50—60 мин измеряют их оптические плотности на спектрофотометре при длине волны 543 нм, или на фотоэлектроколориметре при светофильтре с наиболее близкими к этой длине волны характеристиками (например, фильтр № 6 для ФЭК-56), в кюветах длиной 10 мм относительно кюветы сравнения, наполненной морской водой без реактивов (для этого лучше всего брать часть пропущенной через редуктор пробы из первых 50 мл, которые не используются в анализе).

5.2. Определение поправки на загрязненность реактивов

При приготовлении новых растворов реактивов и дистиллированной воды производят оценку их загрязненности нитратным и нитритным азотом. С этой целью 100 мл дистиллированой воды подщелачивают раствором ЭДТА до рН = 9,6 и пропускают через редуктор (см. п. 5.1). Первые 50 мл элюента отбрасывают, отбирают 25 мл средней порции, добавляют к этому раствора 1,25 мл реактива Грисса—Илосвая и измеряют оптическую плотность пропущенной через все стадии анализа дистиллированной воды относительно дистиллированной воды без реактивов. По измеренному значению оптической плотности с помощью градуировочного графика находят поправку на загрязненность нитратным и нитритным азотом (мкг/л) реактивов и дистиллированной воды, на которой они готовились. Эту поправку учитывают при обработке результатов анализа проб морской воды.

При определении поправки на загрязненность реактивов можно пользоваться градуировочной кривой, построенной по результатам фотометрирования приготовленных на морской воде стандартных растворов нитратов, так как в случае малых концентраций влияние солености невелико.

6. Подготовка средств измерений к работе

6.1. Методы приготовления градуировочных растворов

Основной стандартный раствор азотнокислого калия готовят растворением 0,361 г дважды перекристаллизованной и высушенной до постоянной массы (при температуре 110°С) соли в 0,5 л дистиллированной воды, лишенной СО2.

Для консервации добавляют 1 мл насыщенного раствора сулемы с таким расчетом, чтобы общий объем раствора был 500 мл. Основной стандартный раствор содержит 0,1 мг нитратного азота в 1 мл, устойчив в течение 6 мес при температуре 4—5°С.

Рабочий стандартный раствор азотнокислого калия готовят путем разбавления основного стандартного раствора в 100 раз. Этот раствор содержит 1 мкг нитратного азота в 1 мл. Его готовят в день употребления.

Основной стандартный раствор нитрита натрия готовят растворением 0,4927 г дважды перекристаллизованной и высушенной до постоянной массы (при температуре 110°С) соли в мерной колбе на 1 л дистиллированной водой. Для консервации добавляют 2 мл хлороформа с таким расчетом, чтобы общий объем раствора был 1000 мл. При хранении в холодильнике при температуре 4—5°С раствор устойчив в течение 6 мес.

1 мл основного стандартного раствора содержит 0,1 мг нитритного азота.

Рабочий стандартный раствор нитрита натрия готовят путем разбавления в 100 раз основного стандартного раствора. 1 мл этого раствора содержит 1 мкг нитритного азота. Раствор готовят в день употребления.

6.2. Установление градуировочных характеристик метода

В цилиндры Несслера или мерные колбы на 100 мл отбирают 0,5; 1,0; 2,5; 5,0; 7,5; 10,0 мл рабочего стандартного раствора нитрата калия и доводят до метки морской водой с содержанием нитратов и нитритов не более 5—10 мкг/л, приготовленной согласно п. 4.1.12. Получают градуировочные растворы с концентрациями нитратного азота соответственно 5; 10; 25; 50; 75 и 100 мкг/л. Сосуды для градуировочных растворов предварительно несколько раз промывают морской водой, применяемой для приготовления растворов. Градуировочные растворы одной и той же концентрации готовят параллельно три раза.

Примерно 300 мл морской воды, которая использовалась для приготовления градуировочных растворов, подщелачивают ЭДТА и пропускают через редуктор. Первые 250 мл отбрасывают, следующие 25 мл отбирают для выполнения измерений. Эта аликвота в дальнейшем служит холостой пробой.

К каждому градуировочному раствору добавляют щелочной раствор ЭДТА до установления рН w 9,6. Затем растворы последовательно в порядке возрастания концентрации пропускают че-, рез редуктор и анализируют аналогично пробам морской води относительно холостой пробы, к которой также добавляют 1,25 мл реактива Грисса—Илосвая.

По полученным данным строят градуировочный график.

В случае низких концентраций нитратов допускается применение кювет длиной 20; 30 и 50 см. При анализе исследуемых проб морской воды применяют те же кюветы, которые использовались при построении градуировочного графика. Градуировочные кривые для нитратов и нитритов необходимо проверять не реже одного раза в месяц и обязательно всякий раз после приготовления новых реактивов.

6.3. Оценка полноты восстановления нитратов

Для оценки полноты восстановления нитратов строят градуировочный график по результатам фотометрирования стандартных растворов нитритов. В мерные колбы или цилиндры Несслера на 100 мл, предварительно промытые морской водой, используемой для приготовления стандартных растворов, отмеривают 0,5; 1,0; 2,5; 5,0; 7,5 и 10,0 мл рабочего стандартного раствора нитрита натрия и доводят растворы до метки морской водой. Получают градуировочные растворы, содержащие соответственно 5; 10; 25; 50; 75 и 100 мкг/л нитритного азота. Градуировочный раствор одной и той же концентрации готовят параллельно три раза. В каждый раствор и холостую пробу, представляющую собой морскую воду, на которой готовили стандарты, добавляют по 5 мл реактива Грисса—Илосвая, перемешивают и через 50— 60 мин измеряют оптическую плотность градуировочных растворов относительно холостой пробы (см. п. 5.1). По полученной градуировочной кривой судят о восстановительной способности редуктора.

7. Обработка результатов

По измеренным значениям оптической плотности находят с помощью градуировочного графика суммарную концентрацию нитратов и нитритов в морской воде. Вычитая из этого значения заранее определенную концентрацию нитритов и поправку на загрязненность реактивов, получают концентрацию нитратов (мкг/л) в исследуемой пробе морской воды.

8. Числовые значения показателей погрешности MB И

На основании метрологической аттестации, проведенной ВНИИАСМ—НПО “Исари” Госстандарта СССР с 01.09 по 25.12.87 г. (табл. 17) настоящая методика определения нитратов в морской воде допущена к применению в организациях Росгидромета.

Таблица 17

Результаты метрологической аттестации

Диапазон концентраций нитратного азота,мкг/л

Показатель воспроизводимости (e ). %

Показатель правильности (q ), %

Показатель погрешности МВИ, ∑ погрешность (D ), %

5—25

3,5

6,3

7,39

25—50

2,6

2,0

3,2

50—100

2,45

2,0

3,1

100—250

3,3

2,0

3,7

250—500

2,35

1,4

2,7

 

9. Требования к квалификации аналитика

Определение нитратов может выполнять инженер или техник-химик со средним специальным образованием, имеющий опыт работы с химическими препаратами.

 

10. Нормы затрат рабочего времени на анализ

Для анализа нитратов в 10 пробах требуется 9,5 чел.-ч, в том числе:

на взятие проб из батометра — 0,3 чел.-ч;

на приготовление растворов реактивов—0,4 чел.-ч;

на подготовку посуды — 0,6 чел.-ч;

на подготовку двух редукторов — 3,0 чел.-ч;

на выполнение холостых определений— 1,0 чел.-ч;

на выполнение измерений — 3,2 чел.-ч;

на выполнение расчетов — 0,5 чел.-ч.

При необходимости освобождения проб воды от сероводорода или дополнительного удаления гумусовых веществ требуется i 11,5 или 11,7 чел.-ч соответственно.

СПИСОК ЛИТЕРАТУРЫ

1. Исаева А. Б., Богоявленский А. Н. Определение нитратов в морской воде восстановлением их до нитритов при помощи амальгамированного кадмия.—Океанология, 1968, т. 8, вып. 3, 539—546.

2. Руководство по методам химического анализа морских вод. — Л.: Гидрометеоиздат, 1977, с. 82—92.

3. Сапожников В. В., Гусарова А. Н., Лукашев Ю. Ф. Определение нитратов в морской воде.—В кн.: Материалы Всесоюзного семинара “Совершенствование гидрохимических методов в промыслово-океанографических исследованиях ресурсов Мирового океана”.—М.: изд. ВНИРО, 1970, с. 6—7.

4. Современные методы рыбохозяйственных морских гидрохимических исследований.—М.: Пищевая промышленность, 1973, с. 103—105.

5. Grasshoff К. Zur bestimmung von Nitrat in Meer und Trinkwasser. -Kieler Meeresforch., 1964. В. 20, Н. 1, S. 5—12.

6. Wооd Е. D., Armstrong F. A. J., Richards F. A. Determinatic of nitrate in sea water by cadmium-copper reduction to nitrite. — J. Mar bic Ass., U. K., 1967, v. 47, p. 23—31.