АММОНИЙНЫЙ АЗОТ

Ионы аммония появляются в морской воде и как первичный продукт обмена веществ, и на последней стадии полной минерализации органических остатков. Аммонийный азот потребляется фитопланктоном в процессе фотосинтеза, при этом водоросли затрачивают меньшую энергию по сравнению с ассимиляцией нитратов. Следовательно, определение концентрации аммонийного азота необходимо для оценки биологической продуктивности моря и интенсивности минерализации органических веществ. Следует отметить, что содержание аммонийного азота в морской воде может изменяться в очень широких пределах: от нескольких мкг/л в открытом океане до нескольких тысяч мкг/л в прибрежных районах и внутренних морях.

1. Сущность метода анализа

Метод определения аммонийного азота основан на реакции аммиака в щелочном растворе с избытком гипохлорита с образованием монохлорамина, который в присутствии фенола и иона нит-ропруссида дает индофеноловый голубой [2]. Метод достаточно прост и может применяться не только в лабораторных условиях, но и на современных научно-исследовательских судах.

Ввиду адсорбции аммиака на стенках посуды, а также попадания его в растворы из воздуха лабораторных помещений, в котором он всегда присутствует, метод не отличается хорошей воспроизводимостью при концентрациях аммонийного азота ниже 5 мкг/л.

Фоном реактивов пренебрегают, если приготовленная безаммиачная вода содержит аммиак в концентрации не более 15 мкг/л [1,2].

Концентрации реагентов имеют существенное значение. Рекомендуемые ниже их концентрации позволяют получить оптимальную чувствительность и небольшой фон. Увеличение концентрации гипохлорита натрия вдвое практически не влияет на результаты анализа, тогда как при таком же повышении концентрации фенола индофенол не образуется. Одновременное же увеличение вдвое концентрации как гипохлорита, так и фенола не изменяет их отношения в растворе и поэтому не влияет на анализ, однако при этом сильно увеличивается фон. Увеличение концентрации катализатора более чем в 10 раз повышает фон, но не улучшает чувствительность [2].

рН морской воды сильно влияет на результаты анализа, так как монохлорамин образуется при рН = 8,0... 11,5. При более высоких его значениях аммиак частично окисляется до нитритов.

В дистиллированной воде при комнатной температуре реакция протекает за два часа, тогда как в океанической воде — за шесть часов. Цвет индофенолового голубого устойчив несколько суток при защите растворов от прямого солнечного света [2].

Реакция образования индофенолового голубого, положенная в основу настоящей методики, является специфической для аммиака — мочевина и аминокислоты (например, глицин и глутамин) не мешают анализу. Не мешает также определению сероводород в концентрациях до 2 мг/л. При анализе проб воды Черного моря, в котором содержание сероводорода достигает иногда 20 мг/л, пробы следует разбавить примерно в пять раз безаммиачной водой, у которой известно фоновое содержание аммонийного азота.

В лабораторном помещении, где проводят определение аммонийного азота, нельзя проводить другие анализы, связанные с использованием растворов аммиака. Кроме того, помещение следует систематически проветривать и полностью исключить в нем курение.

2. Средства измерений, оборудование, материалы и реактивы

Для выполнения анализа применяются:

фотоэлектроколориметр (К.ФК-3, ФЭК.-60, ФЭК-56) или спектрофотометр универсальный любого типа с кюветами длиной 10; 20; 50 и 100 мм;

штатив химический с зажимами — по ТУ 79 РСФСР 265;

набор сит на 0,25; 0,50; 0,75 и 1,00 мм — по ТУ 25—06—1250;

шланг полиэтиленовый или полихлорвиниловый, внутренний

диаметр 4—6 мм — по ТУ 64—2—253;

склянка СПЖ (Тищенко) — по ГОСТ 25336;

колбы мерные с притертой пробкой на 1 л — по ГОСТ 1770;

колбы мерные с притертой пробкой на 100 мл— по ГОСТ 1770;

колбы Эрленмейера с притертыми пробками на 50 и 100 мл — по ГОСТ 1770;

пипетки автоматические градуированные на 25 и 50 мл — по ГОСТ 20292;

пипетки градуированные на 1; 2; 5 и 10 мл—по ГОСТ 20292;

цилиндр мерный на 1 л—по ГОСТ 1770;

микробюретка на 5 мл — по ГОСТ 20292;

ионообменная колонка длиной 60 см, внутренним диаметром 16 мм (рис. 12);

трубка стеклянная (внутренний диаметр 4 мм);

колба двухгорлая круглодонная на 25—50 мл — по ГОСТ 25336;

холодильник обратный длиной 100—200 мм — по ГОСТ 25336;

воронка капельная на 10—20 мл—по ГОСТ 25336;

трубки хлоркальциевые — по ГОСТ 25336;

бумага индикаторная универсальная—по ТУ 6—09—181;

катионит КУ-2 — по ГОСТ 20298 (или другой равноценный);

аммоний хлористый, х. ч.—по ГОСТ 3773;

фенол (карболовая кислота), ч. д. а.—по ГОСТ 6417;

натрий нитропруссидный (двухводный), ч. д. а.—по ТУ 6—-09—4224;

натрия гидроксид, х. ч. — по ГОСТ 4328 или калия гидроксид импортного производства;

калий марганцовокислый, ч. д. а. или х. ч,—по ГОСТ 20490;

кислота серная (плотность 1,84), х. ч. — по ГОСТ 4204;

кислота соляная концентрированная, х. ч.—по ГОСТ 3118;

кислота азотная концентрированная, х. ч. или ч. д. а.—по ГОСТ 4461;

кислота лимонная одноводная, х. ч. или ч. д. а. — по ГОСТ 3652;

кислота борная, х. ч. или ч. д. а.— по ГОСТ 9656;

натрий лимоннокислый 5,5-водный, ч. д. а.—по ГОСТ 22280;

натрий хлористый, х. ч. или ч. д. а.—по ГОСТ 4233;

натрий серноватистокислый, пятиводный, ч. д. а. — по ТУ 6—09—01— 313; или раствор концентрацией 0,05 моль/л (стандарт-титр) — по ТУ 6—09—2540;

калий йодистый, ч. д. а. или х. ч. — по ГОСТ 4232;

крахмал растворимый (амилодекстрин) для иодометрии, ч. д. а.—по ГОСТ 10163.

Рис. 12. Колонка для ионообменной смолы.

1—стеклянная пробка с трубкой; 2—колонка для ионообменной смолы; 3—ионообменная смола; 4— стеклянный фильтр; 5 — кран

 

3. Отбор проб

 

Пробы морокой воды на аммонийный азот анализируют сразу же после их взятия. Хранение проб не допускается.

 

4. Подготовка к анализу 4.1. Подготовка колонки с катионитом

Катионит КУ-2 просеивают на ситах и отбирают фракцию с размером зерен 0,25—0,50 мм. Смолу этой фракции выдерживают 20 ч в мерном цилиндре на 1 л в растворе HNO3 концентрацией 2 моль/л или насыщенном растворе NaCl. Этой смолой заполняют колонку слоем 50 см и омывают от пыли и осколков зерен пропусканием дистиллированной воды снизу вверх с такой скоростью, чтобы смола находилась во взвешенном состоянии Отмывку прекращают при отсутствии в промывных водах взвешенных частиц. Затем смолу промывают дистиллированной водой сверху вниз до нейтральной реакции промывных вод по индикаторной бумаге. Окончательный слой смолы равен 45 см.

4.2. Методы приготовления реактивов для проведения анализа

Все реактивы и стандартные растворы готовят на свежеприготовленной безаммиачной воде.

 

4.2.1. Безаммиачную дистиллированную воду получают пропусканием дистиллированной воды через колонку с ионообменной смолой КУ-2 со скоростью 3 мл/мин в герметичной системе, в которой сообщение с воздухом осуществляется через промывалку с концентрированной серной кислотой (рис. 13). Опыт показывает, что минимального содержания аммиака в безаммиачной дистиллированной воде в такой системе можно достигнуть после трехкратного пропускания дистиллированной воды через колонку. '

Рис. 13. Установка для получения безаммиачной воды.

I— бутыль с дистиллированной водой;

2 — резиновые пробки; 3 — шланги (резиновые или полихлорвиниловые); 4 — хлор-кальциевая трубка с твердым NaOH; 5— стеклянная колонка с ионообменной смолой КУ-2; 6—штатив лабораторный; 7— бутыль для сбора безаммиачной воды;

8 — гидравлический затвор с серной кислотой; 9—сифон для слива безаммиачной воды.

4.2.2 Реагент А готовят растворением 35 г фенола (допускается слегка розовый цвет) и 0,400 г натрия нитропруссидного в безаммиачной дистиллированной воде в мерной литровой колбе до метки. В холодильнике раствор устойчив в течение нескольких недель. Его заменяют при появлении зеленоватой окраски.

4.2.3. Раствор тиосульфата натрия концентрацией 0,05 моль/л готовят из стандарт-титра или растворением 12,4 г реактива в 1 л безаммиачной воды.

4.2.4. .1%-ный раствор йодистого калия готовят растворением 1 г соли в 99 мл дистиллированной воды.

4.2.5. .1%-ный раствор крахмала готовят следующим образом. 1 г крахмала растворимого взбалтывают в 10 мл дистиллированной воды и образовавшуюся взвесь вливают при помешивании в 89 мл кипящей дистиллированной воды. Полученный прозрачный раствор охлаждают и хранят в склянке с притертой пробкой, Обычно он устойчив 1—2 недели. Его заменяют новым раствором в том случае, если он окрашивает иод в коричневый, а не в синий цвет.

4.2.6. Раствор гидроксида натрия концентрацией 0,45 моль/л готовят растворением 1,8 г препарата в 100 мл безаммиачной воды.

4.2.7. Раствор гидроксида натрия для получения реагента Б готовят растворением 0,16 г реактива в 100 мл безаммиачной воды.

4.2.8. Реагентом Б является раствор гипохлорита натрия, содержащий около 0,14 % активного хлора в гидроокиси натрия. Для получения 100 мл реагента Б необходимо собрать прибор, состоящий из трех частей: двухгорлой колбы на 25—50 мл для получения хлора (в одно горло вставлен обратный холодильник, в другое — капельная воронка), склянки Тищенко и двухгорлой колбы на 250 мл для получения гипохлорита натрия (в одно горло этой колбы вставлена стеклянная трубка почти до дна колбы, а в другое—стеклянная трубка с гранулированным NaOH или КОН для поглощения С02 из воздуха). Эти части прибора соединены резиновыми трубками. Общий вид прибора представлен на рис. 14.

Для получения хлора берут большой избыток реактивов 2 г KMnO4 и 6 мл концентрированной соляной кислоты, которую по каплям прибавляют к перманганату калия из капельной воронки. Образующийся хлор очищают от воды и газообразного хлористого водорода в склянке Тищенко с концентрированной серной кислотой, которая служит также счетчиком тока хлора, и пропускают в раствор гидроокиси натрия, приготовленный согласно п. 4.2.7. Через каждую минуту после энергичного перемешивания измеряют рН раствора по универсальной индикаторной бумаге. При рН = 7, т. е. после нейтрализации щелочного раствора, реакцию прекращают, добавляют 1,8 г твердой гидроокиси натрия, закрывают колбу пробками и полностью растворяют щелочь при перемешивании. Концентрацию полученного гипохлорита натрия определяют следующим образом: в коническую колбу на 100 мл отбирают пипеткой 1 мл полученного раствора гипохлорита натрия, добавляют 50 мл свежеприготовленного 1 %-ного раствора KI (раствор желтеет), а затем—0,25 мл концентрированной соляной кислоты. В результате выделения иода раствор приобретает светло-коричневый цвет. После тщательного перемешивания его титруют раствором тиосульфата натрия концентрацией 0,05 моль/л, сначала до светложелтого цвета, а затем после прибавления 1 мл 1 %-ного раствора крахмала, до полного обесцвечивания. 1 мл раствора тиосульфата натрия соответствует 3,5 мг активного хлора.

Рис. 14. Установка для получения гипохлорита натрия.

1—штативы лабораторные; 2—электрическая плитка; 3 — колба с перманганатом калия; 4 — капельная воронка с соляной кислотой; 5 — холодильник шариковый; 6—шланги (резиновые или полихлорвиниловые); 7 — склянка Тищенко с серной кислотой; 8 — колба с раствором едкого натра; 9 — хлоркальциевая трубка с твердым NaOH.

Необходимо отметить, что очень трудно определить момент нейтрализации, и конечный раствор поэтому всегда является кислым за счет избытка хлора. К тому же хлор обесцвечивает красители индикаторной бумаги, и она становится белой. Поэтому раствор всегда содержит избыточное количество активного хлора в форме хлорноватистой 'кислоты. В норме концентрация активного хлора равна 1,4 мг/мл. Если она превышает это значение более чем в полтора раза, то необходимо полученный раствор разбавить рассчитанным количеством щелочного раствора, приготовленного согласно п. 4.2.6., с обязательным повторным определением содержания активного хлора. Для примера, при концентрации 2,8 мг/мл необходимо добавить 100 мл раствора щелочи. Приготовленный раствор гипохлорита натрия хранят в склянке из темного стекла с притертой пробкой. При хранении в холодильнике раствор устойчив 3—4 недели.

4.2.9. Буферный раствор готовят растворением 66,7 г натрия лимоннокислого, 34 г борной кислоты, 30 г едкого натра и 19,4 г лимонной кислоты в безаммиачной дистиллированной воде в мерной литровой колбе до метки. Его хранят в холодильникев склянке с притертой пробкой. Он устойчив длительное время, однако рекомендуется иметь не более 1 л раствора. Буферный раствор должен иметь рН = 10,5... 11,0, поэтому его необходимо периодически проверять с помощью рН-метра (нельзя использовать для этого индикаторную бумагу). Этот раствор имеет то преимущество, что при его применении для определения аммонийного азота не выпадает осадок.

4.2.10. Раствор азотной кислоты концентрацией 2 моль/л готовят смешением одного объема концентрированной азотной кислоты (.~10 моль/л) и четырех объемов дистиллированной воды.

4.2.11. Насыщенный раствор хлористого натрия готовят растворением 36,0 г соли в 100 мл дистиллированной воды.

4.3. Подготовка посуды для проведения анализа

Важное значение для точности анализа имеет чистота посуды, особенно колб, в которых получают окрашенные растворы. Опыт показал, что после мытья и ополаскивания безаммиачной водой их следует сушить 3—4 ч в сушильном шкафу при температуре 200 °С, при которой разлагаются большинство солей аммония. Затем по охлаждении в шкафу до 60—70 °С колбы закрывают притертыми пробками и в таком виде температуру доводят до комнатной. Всю остальную посуду следует перед употреблением 2—3 раза ополаскивать безаммиачной водой.

Все операции с открытыми растворами при анализе на аммонийный азот следует проводить как можно быстрее из-за интенсивного поглощения аммиака из воздуха и связанного с этим завышения результатов.

5. Проведение анализа

25 мл пробы морской воды наливают в колбу Эрленмейера на 50 мл с пришлифованной пробкой, затем добавляют в вытяжном шкафу последовательно 1,5 мл буферного раствора и по 0,7 мл реагентов А и Б. После каждого добавления колбу закрывают пробкой и раствор тщательно перемешивают. Закрытую колбу оставляют стоять в темноте при комнатной температуре по крайней мере 6 ч, а лучше всего до следующего дня. В зависимости от интенсивности окраски раствора выбирают длину кюветы (50; 20 или 10 мм) и измеряют его оптическую плотность при 630 нм на спектрофотометре или на фотоэлектроколориметре при светофильтре, наиболее близком к этой длине волны (например, для ФЭК-60 светофильтр № 6) относительно кюветы той же длины, наполненной аликвотной частью пробы морской воды. При использовании кюветы длиной 100 мм необходимо брать 50 мл пробы. В этом случае объем прибавляемых реагентов надо увеличить вдвое.

Если в кювете длиной 50 мм оптическая плотность определяемой пробы больше 0,50—0,60, то следует провести повторное измерение в кювете длиной 20 мм. Если оптическая плотность пробы в последней кювете превышает 0,80, то необходимо снова провести измерение, но уже в кювете длиной 10 мм. Если же в этой кювете оптическая плотность превышает 1,5—1,7, то пробу необходимо разбавить в два раза. Для этого отбирают аликвоту 50 мм и разбавляют безаммиачной водой в мерной колбе на 100 мл до метки. В этом случае обязательно определяют содержание аммонийного азота в безаммиачной воде в кювете длиной 50 мм. Если же разбавление в два раза окажется недостаточным, то пробу разбавляют в четыре раза (25 мл пробы в мерной колбе на 100 мл). Оптическую плотность разбавленных проб измеряют в кюветах длиной 10 мм против кюветы, наполненной аликвотной частью разбавленной пробы.

Для ускорения анализа без понижения его точности можно 'использовать безаммиачную воду с концентрацией аммонийного азота 15—20 мкг/л, которую получают двукратным пропусканием дистиллированной воды через колонку со скоростью 7—8 мл/мин.

 

6. Подготовка средств измерений к работе

6.1. Методы приготовления градуировочных растворов

Основной стандартный раствор хлористого аммония готовят растворением 0,3820 г соли в безаммиачной дистиллированной воде в мерной литровой колбе до метки; 1 мл этого раствора содержит 0,1 мг аммонийного азота.

Рабочие стандартные растворы, хлористого аммония № 1, 2 и 3 готовят разбавлением соответственно 1; 10 и 15 мл основного стандартного раствора безаммиачной дистиллированной водой в мерных колбах на 100 мл до метки. 1 мл этих растворов содержит соответственно 1,0; 10,0 и 15,0 мкг аммонийного азота. Растворы готовят в день употребления.

6.2. Установление градуировочных характеристик метода

При построении градуировочных графиков необходимо предварительно получить требуемое количество безаммиачной воды, а не отбирать ее из емкости, в которую она непрерывно поступает, т. е. пользоваться безаммиачной водой с определенной концентрацией аммонийного азота. В этом случае получается хорошая воспроизводимость результатов.

В связи с тем, что концентрация аммонийного азота в морской воде может изменяться от нуля до нескольких тысяч мкг/л, строят градуировочные графики в диапазонах 0—100, 0—500 или 0—1500 мкг/л.

Для построения градуировочного графика в диапазоне концентраций 0—100 мкг/л отбирают 0,5; 2,0; 4,0; 6,0; 8,0 и 10,0 мл рабочего стандартного раствора хлористого аммония № 1 и разбавляют их безаммиачной водой в мерных колбах на 100 мл до метки. Полученные растворы имеют концентрации 5,0; 20,0; 40,0; 60,0; 80,0 и 100 мкг/л. Отбирают пипеткой в колбы Эрленмейера по 25 мл каждого раствора и добавляют к ним в вытяжном шкафу последовательно 1,5 мл буферного раствора и по 0,7 мл реагентов А и Б. После добавления каждого реагента колбу закрывают пробкой, раствор перемешивают и оставляют стоять в темноте при комнатной температуре по крайней мере 6 ч, а лучше всего до следующего дня. Окрашенный прозрачный раствор переливают в кювету длиной 50 мм и измеряют его оптическую плотность относительно кюветы, наполненной аликвотной частью безаммиачной дистиллированной воды с добавленными к ней теми же реактивами. Каждый стандартный раствор готовят параллельно не менее трех раз. Градуировочный график строят по средним значениям оптической плотности в координатах “оптическая плотность — концентрация аммонийного азота, мкг/л”. Его следует проверять не реже одного раза в месяц и обязательно каждый раз при приготовлении новых растворов реактивов.

Для построения градуировочных графиков в диапазонах концентрации 0—500 и 0—1500 мкг/л отбирают по 0,5; 1,0; 2,0; 3,0; 4,0; 5,0 и 0,6; 2,0; 4,0; 6,0; 8,0; 10,0 мл рабочих стандартных растворов № 2 и 3 соответственно и разбавляют их безаммиачной водой в мерных колбах на 100 мл до метки. Полученные растворы имеют концентрации 50; 100; 200; 300; 400; 500 и 90; 300; 600; 900; 1200; 1500 мкг/л соответственно. Дальнейший ход построения калибровочных графиков аналогичен описанному для диапазона 0—100 мкг/л, за исключением того, что оптическую плотность измеряют в кюветах длиной 20 и 10 мм соответственно. Все измерения проводят при длине волны 630 нм или максимально к ней приближенной.

7. Обработка результатов

По измеренным значениям оптической плотности исследуемых проб морской воды с помощью градуировочного графика находят концентрацию аммонийного азота (мкг/л).

Содержание аммонийного азота в пробах, разбавленных в два и четыре раза, рассчитывают соответственно по формулам

                   

где а и b — содержание аммонийного азота в разбавленной пробе и безаммиачной воде соответственно.

8. Числовые значения показателей погрешности МВИ

На основании метрологической аттестации, проведенной ВНИИАСМ—НПО “Исари” Госстандарта СССР с 01.09 по 25.12.87 г. (табл. 18), настоящая методика определения аммонийного азота допущена к применению в организациях Росгидромета.

Таблица 18

Результаты метрологической аттестации МВИ

Диапазон концентраций аммонийного азота в морской воде, мкг/л

Показатель воспроизводимости (e ), %

Показатель правильности (q ). %

Показатель погрешности МВИ“ ∑ погрешность (D ),%

15—50

3,85

10,3

11,40

50—100

2,45

3,4

4,27

100—500

1,70

2,2

2,80

500—1500

0,85

1,4

1,69

 

9. Требования к квалификации аналитика

Определение аммонийного азота может выполнять инженер иди техник-химик со средним специальным образованием, имеющий опыт работы с химическими препаратами.

10. Нормы затрат рабочего времени на анализ

Для анализа аммонийного азота в 10 пробах требуется 11,5 чел.-ч, в том числе:

на взятие проб из батометра — 0,5 чел.-ч;

на приготовление безаммиачной воды (5 л) — 8,5 чел.-ч;

на приготовление растворов реактивов—1,5 чел.-ч;

на выполнение измерений — 0,5 чел.-ч;

на выполнение расчетов — 0,5 чел.-ч.

СПИСОК ЛИТЕРАТУРЫ

1. Руководство по методам химического анализа морских вод.—Л.: Гидрометеоиздат, 1977, с. 92—100.

2. Сhemiса1 methods for use in marine environmental monitoring/Manual and Guides, N 12.—IOC, UNESCO, 1983, p. 29—36.